STUDY OF THE EXTINCTION OF GUNPOWDER IN THE COMBUSTION
MODEL WITH A VARIABLE SURFACE TEMPERATURE

V. A. Frost and V. L. Yumashev UDC 536.46

The results of a calculation of the rate of transient combustion of gunpowder during a fall in
pressure are presented; these are obtained by the numerical integration of the equations of
transient-combustion theory, allowing for the variable surface temperature of the k phase.
For rapid and severe pressure drops extinction always occurs, no introduction of special ex-
tinction conditions being required. The change in the rate of burning during the extinction
process is of a smooth nature.

It is already well known from experimental data that gunpowder is extinguished when the pressure
falls rapidly and fairly severely [1]. In order to study the extinction of gunpowder we shall here use the
theory of transient combustion of Ya. B. Zel'dovich and B. V. Novozhilov [2-4]. The basic assumptions of
this theory are as follows:

1) The chemical reactions in the k phase only take place in a thin surface layer.

2) The reactive layer of the k phase and the gas flame are rearranged almost instantaneously when
the external conditions alter and remain in a quasi-steady state all the time.

3) The deviation of combustion from the steady state is determined solely by the inertia of the heated
layer of k phase. The rearrangement of the heated layer in a coordinate system linked to the surface of the
k phase is described by the equation
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Here x is the coordinate normal to the surface of the k phase, t is the time, u=u(t) is the rate of
burning, T=T(X, t) is the temperature distribution in the k phase, w is the thermal diffusivity of the k
phase.

The thermal flux from the reaction zone into the heated layer and the surface temperature of the k
phase are determined by the processes taking place in the zone of decomposition of the k phase and in the
gas flame; by virtue of the assumptions made they depend solely on the instantaneous values of the pres-
sure and rate of combustion [4]
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Equations (0.2) and (0.3) are valid in the steady-state case as well; hence,they may be determined
from the experimental relationships giving the rate of steady burning and the surface temperature as func-
tions of the pressure and initial temperature of the powder [4]. Equation (0.1), with boundary conditions
(0.2) and (0.3), enables us to determine the rate of burning if the initial temperature distribution and the
pressure/time law are specified.

In the case of a constant surface temperature (T4 =const), extinction occurs when it becomes impossi-
ble to match the instantaneous thermal state of the k phase to the conditions (0.2) and (0.3) [3, 5]. However,
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TABLE 1 ‘ in the case of a variable surface temperature this

Powder model Pressure drop interpretation of extinction encounters certain diffi-
No. of . m No, of. at - culties. The possibility of extinction taking place is
version version introduced into the theory by assuming that the ¢(u)
‘ 14 0.6 curves representing the (0.2) relationship for p=
2 1.0 0.6 const contain certain limiting points corresponding
1 1.4 10 2 g:(s)z 8:;8 to finite values of the rate of burning and tempera-
g % .g 8.:23?; ture gradient, beyond which combustion is impossible
: 7 0.02 0.87 [6, 7]. Passing out beyond these points in the process
IH }:2 12 of transient combustion is considered an extinction.
v 1.4 7 Both in the case of Ty =const and in the presence of
i 8:2 i limiting points, extinction takes place suddenly:
Vil 2 10 1 10 0.99 Immediately before the instant of extinction the rate
Vil s 15 1 10 0.99 of burning is still quite high and in order of magni-
X 0.5 100 1 1.0 0.48 tude lies close to the rate of steady-state burning.

In this paper we shall present the results of a
calculation of the rate of transient burning which oc-
curs durmgafall inpressure, allowing for the variable surface temperature of the kphase, as derived from a
numerical solution of the system of equations (0.1)-(0.3). We shall show that extinction occurs even in the
absence of limiting points in the relationship (0.2). The change in the rate of burning with time during the
extinction process bears a smooth character.

1. Let us consider the burning of gunpowder under a variable pressure. We shall assume that up to
the moment t =0 the powder is burning steadily. It is convenient to transform to dimensionless variables
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Here T, is the initial temperature of the powder, the "degree® superfix indicates the parameters of
the original steady-state mode, the prime indicates the dimensionless variables. Subsequently the prime
will be omitted, since dimensioned variables will no longer be employed. The original steady values of the
dimensionless pressure, burning rate, surface temperature, and temperature gradient are equal to unity.
The heat-conduction equation in dimensionless variables is
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Let us assume that the temperature and temperature gradient on the surface of the k phase are deter~
mined by the relations

u=p"Pexpk (Ts — ¢/ u (1.2)
u = gm(TS"l) (1‘3)

Here k and m are constant quantities coinciding with the definition of 6] (m =k /r). The choice of
relationships (1.2) and (1.3) signifies the choice of a particular model of powder combustion. Equation (1.2}
corresponds to a constant coefficient of the temperature sensitivity of the rate of steady-state burning g =
(9 In uw’/d To)p Equation (1.3) approximates the law of pyrolysis of the k phase. Let us solve (1.2) and (1.3)
for Tg and @:

T, =1+ mllnzu (1.4)
p=ull+1/m—1/klnu+ 0.69%? Inp] (1.5)

‘ The isobars of Eq. (1.5) are shown in Fig. 1 for the case of k=1.4, m=10. For any particular pres-
sure Egs. (1.4) and (1.5) allow a single state of steady burning with the parameters

‘ w=p"% T, =1+4069mtlnp, ¢ =p** (1~ 0.60m™ Inp) (1.6)
(curve C in Fig. 1).
At the instant of time t =0 a pressure drop begins, taking place in accordance with an exponéntial law

P () = pr+ (1 — py) etint (1.7)
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Fig. 1 Fig. 2

Here At is the characteristic time of pressure drop, pj is the pressure level after the drop.
At the initial instant of time the temperature in the k phase is distributed in accordance with the law
T(x,0) =¢€" (—x<z<0) (1.8)

At an infinite distance from the surface the initial temperature of the powder remains intact
T (—=x, =20 (1.9)

The determination of the rate of burning amounts to a solution of Eq. (1.1) subject to the conditions
(1.4), (1.5), (1.7)-(1.9). ’

For a numerical solution of the resultant system of equations, the interval (—= < x =0) is imaged on~
to a unit segment (0= y = 1) by making the coordinate transformation y =1-e®X, Here « is the transforma-
tion parameter, selected from the point of view of securing the greatest accuracy of the numerical method,
and (generally speaking) varying with time. We introduce a finite-difference approximation for the differ-
ential equation and boundary conditions in a rectangular space —time mesh (in the present case the mesh
contained 32 coordinate intervals, while the time step amounted to 0.02 or under), The nonlinear algebrai-
cal system of equations arising as a result of the approximation may be solved by iteration. The rate of
burning is determined at successive, discrete instants of time; the temperature distribution in the k phase
is calculated at the same time. ‘

Table 1 gives the values of the parameters k, m, At, pi in the caleulations, the results of which will
be considered subsequently. In accordance with the table the various versions of the powder model (param-
eters k and m) will be denoted in the text and figures by Roman numerals, and the various versions of
pressure drops (parameters At and p;) by additional Arabic numerals.

2. The results of the calculations showed that there were two different modes of transient burning
of the powder during a pressure drop. Figure 2 illustrates the change in the rate of burning with time for
a number of the modes calculated. In version I-1 the rate of burning passes to a new steady level of u &
0.7 as time progresses, corresponding to a value of P =0.6. This process is accompanied by fluctuations
in the rate of burning; these arise during the rapid change in pressure and attenuate as the steady-state
mode is approached, in agreement with [6].

In version [-2, differing slightly from I-1 simply in respect of the fall-off time, the rate of burning
falls monotonically with time, reaching a value of ~107%, and becomes practically constant. Zero is never
reached because of the form of Eq. (1.3), according to which, even for a surface temperature equal to the
initial temperature of the powder (Tg=0), the rate of burning e~m > 0 (for m=10 it amounts to ~1074).
However, by comparison with the steady burning rate the new level signifies the almost complete absence
of burning, and we may, therefore, consider that extinction has occurred.

The mode of slow burning so attained, despite its constant velocity, is not completely steady, by vir-
tue of (1.6). Hence the rearrangement of the heated layer continues at a constant burning rate, and ulti-
mately there should be an increase in the rate of combustion (a further surge) with subsequent passage to
the steady condition. However, for such a slow burning rate the characteristic time for the rearrangement
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7 P ‘ of the heated layer (~1/u®) is extremely great, so that the
transition out of the state of extinction requires extremely
long intervals (~ 108),

We shall use the term "extinction" to mean condi-
\ : tions of transient burning associated with a release of
25\ AN /K ) pressure, under which the rate of combustion does not
\\Ys< /H :\__—-—a pass out to a steady value corresponding to the new pres-
\\ \ \< z sure level, but falls asymptotically to zero or a very
\ ‘ . small value. The remaining modes of burning may con-

S
—

veniently be called modes of passage to a new stationary
\t | state, or more briefly "transient ‘modes."

R~

\\

— ~— 3. The extinction modes obtained in the calculations
K_ /r? are characterized by the fact that in these ‘'modes combus-
\// . tion does not cease abruptly but quite gradually, by virtue
of a smooth and continuous reduction in combustion rate.
Extinction takes place in this way even for a very rapid
fall in pressure — in this case it sets in a considerable
Fig. 3 time after the completion of the pressure drop (curve I-3
in Fig. 2). The change in burning rate in both the extinc-
tion and transient modes begins in the same way for simi-
lar characteristics of the pressure drop (curves I-1 and

10
Pr 7 I-2 in Fig. 2); the difference between these modes in-
T~ \ creases smoothly with the passage of time.

\\\\ ?\ 7 On analyzing the temperature distribution in the k
N ~ z Ni\ $\ phase obtained during the calculations, we noted that on
\\

45 ~ 3 extinction the second derivative of the temperature with
B P § respect to the coordinate at the surface of the k phase
L E” N { ¢ Tg* always became negative, On the temperature profile
= ! N an inflection point appeared; with the passage of time this
\‘lﬁﬁf N passed into the interior of the k phase. If no extinction
<= F occurred, then Tg" remained positive the whole time, and
the temperature profile exhibited no point of inflection.
Fig. 4 Figure 3 illustrates the time variation in Tg" for a number

of extinction and transient modes.

=

7 7 a7

The condition Tg" = 0 is, thus, anessential sign of extinction. However, the satisfaction of this condi-
tion does not necessarily mean subsequent extinction of the powder. : For an instantaneous fall in pressure,
in particular, in the case of a powder model with a variable surface temperature, the temperature gradient
¢ falls suddenly, whereupon T4" passes to —« and then remains negative for an appreciable time. Never-
theless, for small depths of pressure drop no extinction takes place.

The physical meaning of the condition under consideration, according to (1.1), lies in the fact that,
in the region in which the second derivative of the temperature with respect to the coordinate is negative,
there is no heating of the powder particles as they move toward the surface.

4. As a result of our calculations of transient combustion during a pressure drop with various values
of prand Atwe foundthe "lines of ‘extinetion® for the various versions of the powder model indicated in
Table 1, that is, the boundaries expressed in coordinates of (At, py) above which lay a region in which no
extinction ever occurred, and below which lay a region in which a pressure drop always led to extinction.
The lines of extinction are illustrated in Fig. 4, in which the points indicate the versions of pressure drop
taken from the table —the dark ones in the extinction and the light ones in the transient modes. The exis-
tence of lines of extinction for real gunpowder has been confirmed experimentally {1]. As in the experi-
mental determination of such lines, the values of p, and At lying close to the boundaries of the transition
are determined by selection.

Let us consider the extinction line I, In coordinates of (At, py) this consists of segments of straight
lines. The extinction line does not pass through the point (At=0, p=1): There is a finite depth of pres-
sure drop at which even after an instantaneous drop the powder continues to burn. For the powder model
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I the critical depth of the instantaneous drop equaled ~0.15 (p ~0.85),
f.e., considerably smaller than would follow from the conclusions of [8],
in which extinction was considered as a break in the gas flame as a re-
sult of the intensive gasification of the k phase.

For At =2 the extinction line suffers a break, after which, while
remaining linear, it slopes more gently. At the same time, the manner
in which the combustion rate varies with time on extinction also changes
{curve I-4 in Fig. 2) . First the combustion rate falls in the normal
fashion. Subsequently, however, the fall becomes less rapid and ceases

almost completely; in individual cases there is even an increase in the
combustion rate.

The impression is created that the burning process is
passing out to a steady operating mode. However, the pressure drop
continues, and a new fall in burning rate sets in, leading to extinction.
The extinction process in this case develops in two stages and takes
longer. Only atthe concluding stage is extinction finally determined; then the essential sign of extinc-
tion appears: Tg®* < 0 (Fig. 3).

rig. 5

The break in the extinction line may be explained by the fact that extinction may occur in either the
first or the second period of the fluctuations in the burning rate, and that each form of extinction has its
own critical line: the straight line AB in the first case and the straight line BC inthe second. Extinction in
the second period of the fluctuations occurs when the corresponding eritical line is higher, i.e., after the
intersection of the lines at the point B. If we continue the straight line AB beyond the intersection (in Fig.

4 this is shown by the broken line), then below this line extinction will occur, as before, by the first mech-
anism (curve I-5 in Fig. 2).

With increasing At the extinction line will undergo further curvature, corresponding to a transition
to still more extended extinction processes.

5. Let us consider the influence of the parameters k and m on the extinction process. According to
the theory of B. V. Novozhilov [9] the parameters k and m determine the stability of the combustion of gun-
powder in the original steady mode of operation. Figure 5 shows the boundaries of the region of stability
(line S) in coordinates of (k, r =k/m) and the range of existence of characteristic oscillations in the powder
(line O). The powder models corresponding to Table 1 are shown as points in Fig. 5.

The extinction lines II and IIT (Fig. 4) have the same character as the extinction line I, but they lie
above it, which indicates extinction for less severe pressure drops. This agrees with the fact that the points
II and IN in Fig. 5 lie closer to the boundary of stability than the point I. On the other hand, as the powder
moves away from the stability boundary the extinction lines lie lower (versions IV, V, VI).

Figure 4 gives the experimental extinction line E for powder of the H type, taken from [1] (case py =
40 kg/em?). Between this line and the results of the calculations, qualitative agreement is clearly seen to

exist, especially for version IV. Quantitative agreement is hardly to be expected on using the model rela-
tionships (1.4) and (1.5).

We considered the transient combustion of powders in the case in which the original steady mode lay
in the region of instability (versions VII and VIII). In the calculations a slight change in pressure was
specified (Table 1). The results of the calculations are presented in Fig. 2. In the VII-1 mode we find os-
cillations of the rate of combustion, with a sharply increasing amplitude, as a result of which extinction
takes place even at the second period of oscillations. In the VIII-1 mode, the rate of burning falls monotonic~
ally from the very beginning, with greater and greater velocity, until extinction sets in. This difference

is explained by the fact that the points VII and VIII in Fig. 5 lie in the regions of the oscillatory and mono-
tonic loss of stability, respectively.

For an unlimited increase in the parameter m, there is a transition to the case of Ty =const con-~
sidered by Ya. B. Zel'dovich [3]. In order to realize this case in the calculations we put m~1=0 (version
IX). We also considered an intermediate version X in which m =100. The extinction lines in these versions
shown in Fig. 4 are quite close to one another.

In the case Ty =const there is a clearly expressed instant of extinction up to which the rate of burn-
ing may be readily calculated. At this instant the solution of the original system of equations vanishes, and
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the iterative process of the calculation ceases to converge. According to the results of the caleulation, the
rate of burning falls monotonically, but at the instant of extinetion it is nevertheless quite high — extinction
occurs abruptly.

In the case m =100 the rate of burning first diminishes smoothly (curve X-1 in Fig. 2), as in the
transient modes. However, at a certain instant of time (in the present case t=1.94) there is a sharp fall in
burning rate to a value of ~107%, i.e., extinction sets in. Although the rate of burning changes continuously
in time, as in the earlier-considered cases of moderate m values, the character of the extinction is very
close to that of a sharp jump. Thus the transition to the case T4 =const occurs continuously, both as re-
gards the form of the extinetion line, and as regards the character of the change in burning rate with time.

Extinction was also considered in [5] on the basis of the theory of [2] for a powder model with a con-
stant surface temperature and a constant coefficient of the temperature sensitivity of the rate of steady
burning (8ln v’/ 8T, )p. In contrast to the present investigation, the system of equations describing the
transient burning of the powder was solved by the method of integrated relationships, for which purpose
the form of the temperature distribution in the k phase was prespecified. A slightly different pressure/
time law was also considered. Figure 4 shows the extinction line obtained in [5] for a case coinciding with
version IX, converted to coordinates of p, and At (line P). This passes considerably higher than lines IX
and X and cuts off at At=1.19 (according to [5] no extinction occurs for higher values of At). This differ-
ence is probably associated with the use of the different methods of solving the original equations; the dif-
ference in the pressure variation laws is of secondary importance.

6. The assumption as to the existence of limiting points in the ¢ (p, w) relationship, used in [6, 7] in
order to explain extinction, is associated with the means of determining this function from the experimen-
tal dependence of the rate of steady combustion on the pressure and initial temperature. The experimental
data only enable us to construct a function ¢ (p, u) in a limited range of variation of the parameters, since
outside these limits no states of steady burning can be achieved. This may be explained by the instability
of steady-state burning in the region beyond the limiting points, although this does not exclude the possi-
bility of burning in a transient mode [10].

Let us examine the stability of the combustion of gunpowder in the model defined by Eqs. (1.4) and
(1.5), which were used in the present investigation. Corresponding to any pair of values ¢, u (u > e ) we
have a mode of steady burning for a specific pressure and initial temperature. The stability of this mode
is determined by the local values of k' and r' [not to be confused with k and r =k/m, the parameters of Egs.
(1.4) and (1.5)]. According to definition [9], the local parameters are related to the derivatives of the func-
tions (1.4) and (1.5) \

g dlnu 'R

B4Ar—1 [dlag ru ( 0T
p’ T p \dlaun/p

Expressing k' and r! in this way and substituting them into the stability criterion [9], we obtain an
equation for the stability boundary in coordinates of (u, ¢):

o\ _ 2m k4 VEmk— 2
u y— 2mk

The stability boundary for the case k=1.4, m=10 is shown in Fig. 1 (line S). The region of instabil-
ity of steady-state burning lies to the left of this line. From the experimental determination, the relation-
ship (1.4) could only have been plotted to the right of the stability boundary, and the latter would have
entered as a limiting line.

From [9] also follows the equation of the line delimiting the existence of the characteristic oscilla-
tions of burning rate in the powder (line O in Fig. 1).

(_1;_) _mik+2 V mk
K

u mk

The results of these calculations show that the passage of the transient burning process outside the
limit of stability does not necessarily mean extinction. This is illustrated by the trajectories of the trans-
jent modes I-6 and I-7 in coordinates of (u, ¢) presented in Fig. 1. The trajectory I-6 twice intersects the
stability boundary, while trajectory I-7 even intersects the boundary limiting the existence of characteris-
tic oscillations (C).
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